

Documentation Tutorial: IgH Master userspace real time program in ROS

Welcome to the documentation of IgH Master userspace real time program in ROS.
If you would like to see an example of usage and installation instructions,
see the Guide section. For help or new features or bugs, see information in the Support subsection
of the Guide section.

Contents

	Files / Classes
	Header Files

	Source Files

	License
	Note

	Guide
	Features

	Installation

	Contribute

	Limitations / Steps Forward

	Support

	License

Indices and tables

	Index

	Module Index

	Search Page

Files / Classes

Header Files

EtherCAT Communicator header file

Header file for the EthercatCommunicator class.

Defines

	
DC_FILTER_CNT

	

	
SYNC_REF_TO_MASTER

	

	
FIFO_SCHEDULING

	

	
class EthercatCommunicator

	#include <ethercat_communicator.h>The Ethercat Communicator class.

Basic class for implementing realtime pure communication purposes, from our application to the Ethercat slaves, via IgH Master module. The class uses the POSIX API for gaining realtime attributes.

Public Functions

	
void init(ros::NodeHandle &n)

	Initializes the main thread.

Mostly makes ready the attributes of the realtime thread, before running.
	Parameters

	
	n: The ROS Node Handle

	
void start()

	Starts the main thread.

The function that actually starts the realtime thread. The realtime attributes have been set from init. Implements the basic realtime communication (Tx/Rx) with the EtherCAT slaves. Doesn’t change the output PDOs. Basic state machine:
	Receive the new PDOs in domain1_pd from the IgH Master Module (and therefore from the EtherCAT slaves)

	Move to the domain_pd the output data of process_data_buf, safely

	Publish the “raw” data (not linked to EtherCAT variables) in PDOs received from the domain1_pd, to the /ethercat_data_raw topic

	Synchronize the DC of every slave (every count’nth cycle)

	Send the new PDOs from domain1_pd to the IgH Master Module (and then to EtherCAT slaves)
	See

	void init(ros::NodeHandle &n)

	
void stop()

	Stops the main thread.

This function stops the execution of the realtime thread. The mechanism for stopping it, is provided by the POSIX API. Search for pthread_testcancel() and other related functions.

Public Static Functions

	
static bool has_running_thread()

	A getter for knowing if there is a running thread.

It’s used from the EthercatCommd service, to know if a user stops/starts an already stopped/started EthercatCommunicator.

Private Members

	
pthread_attr_t current_thattr_

	

	
struct sched_param sched_param_

	

Private Static Functions

	
void *run(void *arg)

	

	
void cleanup_handler(void *arg)

	

	
static void copy_data_to_domain_buf()

	

	
void publish_raw_data()

	

	
void sync_distributed_clocks(void)

	Synchronise the distributed clocks

	
void update_master_clock(void)

	Update the master time based on ref slaves time diff

called after the ethercat frame is sent to avoid time jitter in sync_distributed_clocks()

	
uint64_t system_time_ns(void)

	Get the time in ns for the current cpu, adjusted by system_time_base_.

The time in ns.

	Attention

	Rather than calling rt_get_time_ns() directly, all application time calls should use this method instead.

Private Static Attributes

	
int cleanup_pop_arg_ = 0

	

	
pthread_t communicator_thread_ = {}

	

	
ros::Publisher pdo_raw_pub_

	

	
bool running_thread_ = false

	

	
uint64_t dc_start_time_ns_ = 0LL

	

	
uint64_t dc_time_ns_ = 0

	

	
int64_t system_time_base_ = 0LL

	

Input Process Data Objects publisher header file

Header file for the PDOInPublisher class.

	
class PDOInPublisher

	#include <pdo_in_publisher.h>The Ethercat Input Data Handler class.

Used for trasforming the “raw” indexed data from the /pdo_raw topic, sent by the Ethercat Communicator, to values of variables, and stream them to the /pdo_in_slave_{slave_id} topic.

Public Functions

	
void init(ros::NodeHandle &n)

	Initialization Method.

Used for initializing the PDOInPublisher object. It’s basically the main method in the class, which initializes the listener to the afore mentioned topic.
	Parameters

	
	n: The ROS Node Handle

	
void pdo_raw_callback(const ether_ros::PDORaw::ConstPtr &pdo_raw)

	Raw Data Callback.

This method, is called when there are data in the /pdo_raw topic. Should the EtherCAT application change, this callback must change also. Implements the basic functionality of the class, to transform the “raw” data into variable values and pipe them into another topic.
	Parameters

	
	pdo_raw: A copy of the actual data sent to the topic /pdo_raw.

Private Members

	
ros::Subscriber pdo_raw_sub_

	

	
ros::Publisher *pdo_in_pub_

	

Output Process Data Objects publisher header file

Header file for the PDOOutPublisher class.

	
class PDOOutPublisher

	#include <pdo_out_publisher.h>The Process Data Objects Publisher class.

Used for trasforming the “raw” indexed data from the /pdo_raw topic, sent by the Ethercat Communicator, to values of variables, and stream them to the /pdo_out topic.

Used for streaming the pdo_out data inside the process_data_buffer to the /pdo_out_timer topic at a certain rate. It’s been created for logging and debugging reasons.

Public Functions

	
void init(ros::NodeHandle &n)

	Initialization Method.

Used for initializing the PDOOutPublisher object. It’s basically the main method in the class, which initializes the listener to the afore mentioned topic.
	Parameters

	
	n: The ROS Node Handle

	
void pdo_raw_callback(const ether_ros::PDORaw::ConstPtr &pdo_raw)

	Process Data Objects Callback.

This method, is called when there are data in the /pdo_raw topic. Should the EtherCAT application change, this callback must change also. Implements the basic functionality of the class, to transform the “raw” data into variable values and pipe them into another topic.
	Parameters

	
	pdo_raw: A copy of the actual data sent to the topic /pdo_raw.

Private Members

	
ros::Subscriber pdo_raw_sub_

	

	
ros::Publisher pdo_out_pub_

	

EtherCAT Slave header file

Header file for the EthercatSlave class.

	
class EthercatSlave

	#include <ethercat_slave.h>The Ethercat Slave class.

Used for having all the ethercat slave related variables, fetched from the correspondent yaml file, in a single entity.

Public Functions

	
void init(std::string slave, ros::NodeHandle &n)

	Initialization Method.

Used for initializing the EthercatSlave entity. It’s basically the main method in the class.

	
int get_pdo_out()

	Getter Method.

Used for getting the number of bytes of the output PDO of the single slave.

	
int get_pdo_in()

	Getter Method.

Used for getting the number of bytes of the input PDO of the single slave.

	
ec_slave_config_t *get_slave_config()

	

Private Members

	
int vendor_id_

	

	
std::string slave_id_

	

	
int product_code_

	

	
int assign_activate_

	

	
int position_

	

	
int alias_

	

	
int input_port_

	

	
int output_port_

	

	
ec_slave_config_t *ethercat_slave_

	

	
int pdo_in_

	

	
int pdo_out_

	

	
int32_t sync0_shift_

	

Main header file

Main header file.

Services header file

Services header file.

Includes:
	EtherCAT Communicator Daemon

	Services for modifying output PDOs

Functions

	
bool ethercat_communicatord(ether_ros::EthercatCommd::Request &req, ether_ros::EthercatCommd::Response &res)

	ROS Service Callback.

Controls the Ethercat Communicator. The basic functionality is:
	Start

	Stop

	Restart (Remember that a Service Callback must always return a boolean.)

	
bool start_ethercat_communicator()

	Helper function for the ethercat_communicatord callback.

Used from the callback in order to actualy send the start command to the Ethercat Communicator.

	
bool stop_ethercat_communicator()

	Helper function for the ethercat_communicatord callback.

Used from the callback in order to actualy send the stop command to the Ethercat Communicator.

Utilities header file

Utilities header file.

Includes:
	Functions for processing EtherCAT PDOs

	Function for insisting write to file

	Function for safe ascii to integer conversion

	Function for adding two timespec structs

	Functions for checking domain and master states

Deadline Scheduler header file

Deadline scheduler header file.

Should be added to the project in order the SCHED_DEADLINE option could be used. I’m not the author of the header file, nor do I claim any copyrights for it. This file is distributed under the GPLv2 licence. See the licence above to get an idea.

Defines

	
SCHED_DEADLINE

	

Functions

	
int sched_setattr(pid_t pid, const struct sched_attr *attr, unsigned int flags)

	

	
int sched_getattr(pid_t pid, struct sched_attr *attr, unsigned int size, unsigned int flags)

	

	
struct sched_attr

	#include <deadline_scheduler.h>
Public Members

	
__u32 size

	

	
__u32 sched_policy

	

	
__u64 sched_flags

	

	
__s32 sched_nice

	

	
__u32 sched_priority

	

	
__u64 sched_runtime

	

	
__u64 sched_deadline

	

	
__u64 sched_period

	

Source Files

EtherCAT Communicator source file

Implementation of EthercatCommunicator class.

Used for real-time communication with the EtherCAT slaves, via the IgH Master module. The new PD are sent to the /ethercat_data_raw topic.

Input Process Data Objects publisher source file

Implementation of PDOInPublisher class.

Used for publishing the “raw” input data, received from EtherCAT Communicator after transformation into useful, human-readable format, consisted of the EtherCAT variables used by our application. Transforms the indeces to variables.

Output Process Data Objects publisher source file

Implementation of PDOOutPublisher class.

Used for handling the “raw” output data, received from EtherCAT Communicator and transforming them into useful, human-readable format, consisted of the EtherCAT variables used by our application. Transforms the indeces to variables.

Used for streaming the “raw” pdo_out data inside the process_data_buffer to the /pdo_out_timer topic and transforming them into useful, human-readable format, consisted of the EtherCAT output variables used by our application, at a certain rate. It’s been created for logging and debugging reasons.

EtherCAT Slave source file

Implementation of EthercatSlave class.

Used for containing all the useful information of an EtherCAT slave, from the userspace program perspective. Receives all the useful information via the ROS Parameter Server (after they are loaded from ethercat_slaves.yaml).

Main source file

Main source file.

IgH Master EtherCAT module main for realtime communication with EtherCAT slaves. This interface is designed for realtime modules, running in the ROS environment and want to use EtherCAT. There are classes and functions to get the Input and Output PDOs in a realtime context. Before trying to understand the source code of the project, please consider to read and understand the IgH Master Documentation located at: https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf. Finally try to understand the API provided in the /opt/etherlab/include/ecrt.h file. The author admits that the C++ language, is not his strong suit. Therefore feel free to refactore the code given with use of the new C++ (11/14/17) helpful tools (unique/shared pointers and other cool stuff).

Changes in version 0.3:

	Created a frontend UI client in Python, for interacting with the Services API. Features include: Start/Stop function of the EtherCAT Communicator Change the Output PDOs on the run Run script with the aproppriate Service API calls

Changes in version 0.2:

	Added features and bug fixes including: First realtime characteristics added (debate: FIFO vs DEADLINE scheduling?) Handling of the EtherCAT communicator module: Start/Stop/Restart API

	Added processing for the /ethercat_data_raw topic and created: Service API for Output PDO handling and topic streaming: /ethercat_output_data Service API for Input PDO handling and topic streaming: /ethercat_data_slave_{slave_id}

	Added synchronization primitives (spinlocks) for the concurrent threads accessing the EtherCAT buffer.

	Added more source files, ethercat communicator, ethercat_slave, pdo_in_publisher and pdo_out_publisher. Created external objects to use the appropriate classes and functions.

Version 0.1:

	Created the first bare communication layer in the ROS environment. Many bugs and deficiencies including: Non realtime characteristics, no API for Output PDO handling and topic streaming, no handling of the EtherCAT communicator module, no Service API for Input PDO topic streaming.

	One topic streaming: /ethercat_data_raw

Unnamed Group

	
uint8_t *domain1_pd

	Global buffer for the actual communication with the IgH Master Module.

	
uint8_t *process_data_buf

	Global buffer for safe concurrent accesses from the output PDOs services and the EtherCAT Communicator.

	See

	ethercat_comm

	
size_t total_process_data

	Total number of process data (PD) (bytes).

	
size_t num_process_data_in

	Number of input PD per slave (bytes).

Assumes that the EtherCAT application is the same for every slave.

	
size_t num_process_data_out

	Number of output PD per slave (bytes).

Assumes that the EtherCAT application is the same for every slave.

	
int log_fd

	File descriptor used for logging, provided that LOGGING and one of LOGGING_SAMPLING or LOGGING_NO_SAMPLING is enabled.

Could be deprecated in a next version (see kernelshark).

	
ec_master_t *master

	The main master struct.

Used for communication with the IgH Master Module.

	
ec_master_state_t master_state

	The master state struct.

Used to examine the current state (Links Up/Down, AL states) of the Master.

	
ec_master_info_t master_info

	The master info struct.

Used to know the slaves responding to the Master.

	
ec_domain_t *domain1

	The main domain struct variable.

Used to send and receive the datagrams.

	
ec_domain_state_t domain1_state

	The domain state struct.

Used to examine the current state (Working counter, DL states) of the domain.
	See

	ethercat_comm

	
slave_struct *ethercat_slaves

	The main slave struct.

Used by our program to contain all the useful info of every slave.

	
pthread_spinlock_t lock

	The shared spinlock.

Used by every thread whick modifies the process_data_buf.
	See

	process_data_buf

	
EthercatCommunicator ethercat_comm

	The barebone object of our application.

Used for realtime communication (Tx/Rx) with the EtherCAT slaves. Doesn’t change the output PDOs. Basic state machine:
	Receive the new PDOs in domain1_pd from the IgH Master Module (and then to EtherCAT slaves)

	Move to the domain_pd the output data of process_data_buf, safely

	Publish the “raw” data (not linked to EtherCAT variables) in PDOs from the domain1_pd

	Send the new PDOs from domain1_pd to the IgH Master Module (and then to EtherCAT slaves)

	
PDOInPublisher pdo_in_publisher

	

	
PDOOutPublisher pdo_out_publisher

	

	
PDOOutListener pdo_out_listener

	

	
PDOOutPublisherTimer pdo_out_publisher_timer

	

	
int FREQUENCY

	

	
int RUN_TIME

	

	
int PERIOD_NS

	

	
int main(int argc, char **argv)

	

Services source file

Implements the services used.

Provides services for:
	Interacting with the EtherCAT Communicator

	Changing the EtherCAT output PDOs

Functions

	
ethercat_communicatord(ether_ros::EthercatCommd::Request &req, ether_ros::EthercatCommd::Response &res)

	ROS Service Callback.

Controls the Ethercat Communicator. The basic functionality is:
	Start

	Stop

	Restart (Remember that a Service Callback must always return a boolean.)

	
start_ethercat_communicator()

	Helper function for the ethercat_communicatord callback.

Used from the callback in order to actualy send the start command to the Ethercat Communicator.

	
stop_ethercat_communicator()

	Helper function for the ethercat_communicatord callback.

Used from the callback in order to actualy send the stop command to the Ethercat Communicator.

Utilities source file

A library with useful functions for handling EtherCAT PDOs and other utilities.

	
namespace utilities

	
Functions

	
int safe_atoi(const char *s, int *val)

	

	
bool process_input_bit(uint8_t *data_ptr, uint8_t index, uint8_t subindex)

	

	
uint8_t process_input_uint8(uint8_t *data_ptr, uint8_t index)

	

	
int8_t process_input_int8(uint8_t *data_ptr, uint8_t index)

	

	
uint16_t process_input_uint16(uint8_t *data_ptr, uint8_t index)

	

	
int16_t process_input_int16(uint8_t *data_ptr, uint8_t index)

	

	
uint32_t process_input_uint32(uint8_t *data_ptr, uint8_t index)

	

	
int32_t process_input_int32(uint8_t *data_ptr, uint8_t index)

	

	
uint64_t process_input_uint64(uint8_t *data_ptr, uint8_t index)

	

	
int64_t process_input_int64(uint8_t *data_ptr, uint8_t index)

	

	
struct timespec timespec_add(struct timespec time1, struct timespec time2)

	

	
void check_domain1_state(void)

	

	
void check_master_state(void)

	

	
ssize_t insist_write(int fd, const char *buf, size_t count)

	

	
std::string <rim(std::string &str, const std::string &chars)

	

	
std::string &rtrim(std::string &str, const std::string &chars)

	

	
std::string &trim(std::string &str, const std::string &chars)

	

	
void copy_process_data_buffer_to_buf(uint8_t *buffer)

	

EtherCAT Keyboard Controller python file

	
namespace ethercat_keyboard_controller

	
Variables

	
string ethercat_keyboard_controller.help_message= “”“

 ##################################

 ## Ethercat Keyboard controller ##

 ##################################

 Changes elliptic trajectory parameters

 and controlls the ethercat communicator.

 All the terminal commands must beggin with

 an exclamation mark “!”.

 If you want to find the current application variables,

 see the EthercatOutputData.msg.

 The current supported commands are:

 !start : starts the ethercat communicator

 !stop : stops the ethercat communicator

 !restart : restarts the ethercat communicator

 !variable [slave_id | ‘all’] [variable_name] [value] :

 change the value of a variable in the ethercat output data

 !run [script_to_run] : run the script specified,

 inside the ether_ros/scripts directory

 !help : shows this help message

 !q : exit the terminal

 Type !q to quit

 “”“

	

	
string ethercat_keyboard_controller.intro_message= “”“

 Welcome to the Ethercat Keyboard Controller!

 By Mike Karamousadakis

 Contact: mkaramousadakis@zoho.eu

 “”“

	

	
modify_pdo_pub = rospy.Publisher(‘pdo_listener’, ModifyPDOVariables, queue_size=10)

	

	
prompt = ethercat_controller()

	

	
intro

	

	
class ethercat_controller

	Base Ethercat Controller class.

Inherits from the base class Cmd. Serves as a frontend to the C++ code, and specifically to the services implemented.

Public Functions

	
call_modify_publisher(self self, slave_id slave_id, variable_name variable_name, value value)

	

	
modify_output_publisher(self self, slave_id slave_id, index index, subindex subindex, value value, var_type var_type)

	

	
ethercat_communicator_client(self self, mode mode)

	Frontend client for the ethercat_communicatord service.

	Parameters

	
	self: The current object.

	mode: The mode to change to (start/stop/restart).

	
do_shell(self self, args args)

	Main method of ethercat_controller class.

Accepts commnads, decomposes them and acts.
	Parameters

	
	self: The current object.

	args: The arguments given from the cmd line.

	
do_help(self self, line line)

	Helper method.

	Parameters

	
	self: The current object.

	line: Unrelated argument.Just follow the API

	
default(self self, line line)

	Unrecognized command method.

	Parameters

	
	self: The current object.

	line: Unrelated argument.Just follow the API

Public Static Attributes

	
variables2indeces= {

 “state_machine” : [[0, 0], “bool”],

 “initialize_clock”: [[0, 1], “bool”],

 “initialize_angles”: [[0, 2], “bool”],

 “inverse_kinematics”: [[0, 3], “bool”],

 “blue_led”: [[0, 4], “bool”],

 “red_led”: [[0, 5], “bool”],

 “button_1”: [[0, 6], “bool”],

 “button_2”: [[0, 7], “bool”],

 “transition_time”: [[1, 0], “int8”],

 “desired_x_value”: [[2, 0], “int32”],

 “filter_bandwidth”: [[6, 0], “uint16”],

 “desired_y_value”: [[8, 0], “int32”],

 “kp_100_knee”: [[12, 0], “int16”],

 “kd_1000_knee”: [[14, 0], “int16”],

 “ki_100_knee”: [[16, 0], “int16”],

 “kp_100_hip”: [[18, 0], “int16”],

 “kd_1000_hip”: [[20, 0], “int16”],

 “ki_100_hip”: [[22, 0], “int16”],

 “x_cntr_traj1000”: [[24, 0], “int16”],

 “y_cntr_traj1000”: [[26, 0], “int16”],

 “a_ellipse100”: [[28, 0], “int16”],

 “b_ellipse100”: [[30, 0], “int16”],

 “traj_freq100”: [[32, 0], “int16”],

 “phase_deg”: [[34, 0], “int16”],

 “flatness_param100”: [[36, 0], “int16”]

 }

	variables2indeces dictionary.

Used for transforming the [index,subindex] -> variable

License

Copyright (C) 2018 Mike Karamousadakis, NTUA CSL

The IgH EtherCAT master userspace program in the ROS environment is free software; you can
redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; version 2
of the License.

The IgH EtherCAT master userspace program in the ROS environment is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with the IgH EtherCAT master userspace program in the ROS environment. If not, see
<http://www.gnu.org/licenses/>.

Note

The license mentioned above concerns the source code only. Using the
EtherCAT technology and brand is only permitted in compliance with the
industrial property and similar rights of Beckhoff Automation GmbH.
Contact information: mkaramousadakis@zoho.eu

Guide

This guide will solve your problem of where to start with documentation,
by providing a basic explanation of how to do it easily.
Look how easy it is to use:

	After you catkin_make the project, in one terminal run:

$ roslaunch ether_ros ether_ros.launch

	After that, and while the process is running, you run in another terminal:

$ rosrun ether_ros ethercat_keyboard_controller.py

	Now you can give orders to the EtherCAT Communicator via a custom terminal.

Have fun playing around!

	Tip: You could run a bash script in the custom terminal by running:

[ethercat_controller] > !r my_awesome_bash_script.sh

Notice that your script must be under the scripts directory. You could also check some
example scripts there.

Features

	Real time characteristics, using PREEMPT_RT patch

	EtherCAT technology adaptation in Linux

	Works in a recent version of ROS (kinetic)

	Utilizes the main development framework for EtherCAT applications, IgH Master kernel module

Installation

SUPER SOS : The following manual will be extremely helpful for understanding the instructions given in this section. You should definitely read it before procceding. Link [http://linuxrealtime.org/index.php/Main_Page].

0. Preempt_RT Patch

First step to utilize the repository given, is to install the preempt_rt patch in the kernel. Note that in order to install the IgHM, the kernel should be up to 4.9. A proper guide for the installation procedure can be found in the following link [https://ubuntuforums.org/showthread.php?t=2273355]. After you patch the kernel (say 4.9), you will want to use some other configuration parameters in the build of the kernel. Therefore after step 3 and in the line of make menuconfig of the previous link,
you will want to specify some extra configuration parameters, derived from the chapter 3 of the manual mentioned in the beginning, namely:

	CONFIG_PREEMPT_RT_FULL

	CONFIG_CPU_FREQ=n

	CONFIG_CPU_IDLE=n

	CONFIG_NO_HZ_FULL=y

	CONFIG_RCU_NOCB_CPU=y

The author has used only the first configuration parameter and has seen great boost in the performance of the real-time tasks specified. Future work requires more tweaks to be done, derived from the afore mentioned manual.

Tip: While you are in the menuconfig, type “/” and you can type to find the place of a configuration parameter. Exit with ESC

1. Installation of IgHM

	cd into the etherlab-mercurial folder

	Run make ethercatMasterInstallWithAutoStart. Note that root access is needed. If you use another native driver from e1000e, open the Makefile and change the configure option with your driver version. You can find here [http://www.etherlab.org/en/ethercat/hardware.php] and there [http://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf] (Chapter 9), the supported hardware and the options the command configure takes, respectively. If your hardware is not supported or if you don’t want the native driver support fuzz, then you should change the configure command to enable generic driver support (although I think it defaults to that).

2. Run the scripts

	Because we want to have a process in realtime context, we should change it’s priority (done in the code -FIFO policy, 80 priority-). Besides that, the interrupt handler which handles the interrupts generated by the network driver, should have higher priority than the process we develop, so that the EtherCAT datagrams are ready to be sent/received before we process them. For that cause I have written a script, as a sample script, to change the priority of the irq process of the network card.This should be used accordingly to change your process’s priority. You could check if the priority has changed with the chrt command. How-to can be found in this link [https://www.cyberciti.biz/faq/howto-set-real-time-scheduling-priority-process].

	Aside from the enhancements proposed by the manual, we should also change the throttling of our network driver to 0. This is done in the script also in the testbench directory. It is based on my e1000e driver, so use it as a sample script. Documentation for the insertion of the module of the e1000e network driver can be found in here [https://downloadmirror.intel.com/15817/eng/readme.txt].

	Run the script for changing the permissions of ether_ros. We set the suid of ether_ros to be root, so that the ether_ros can be launched without sudo. This will be useful after you catkin_make the project.

Contribute

	Issue Tracker: https://github.com/mikekaram/IgHMaster-userspace-program-in-ROS/issues

	Source Code: https://github.com/mikekaram/IgHMaster-userspace-program-in-ROS

Limitations / Steps Forward

This program assumes that the actual control code of the robot is running in the EtherCAT slaves.
Therefore there is no connection between this program and ros_control, although the intention of the author
is to make this connection happen, for robots that do have a control api inside ROS. This of course means
that the ros_control module should communicate afterwards with this program, to send new data to the EtherCAT
slaves. Needless to say, the EtherCAT slaves will have a much more passive role in this configuration.

Support

If you are having issues, please let us know.
We don’t have a mailing list yet, so the default way is by communicating with: mkaramousadakis@zoho.eu

License

The project is licensed under the GPLv2 licence. See more details in the source files of the project or in
the Lincence section.

Index

 D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V

D

 	
 	DC_FILTER_CNT (C macro)

 	domain1 (C++ member)

 	
 	domain1_pd (C++ member)

 	domain1_state (C++ member)

E

 	
 	ethercat_comm (C++ member)

 	ethercat_communicatord (C++ function), [1]

 	ethercat_keyboard_controller (built-in class)

 	ethercat_keyboard_controller.ethercat_controller (built-in class)

 	ethercat_keyboard_controller.ethercat_controller.call_modify_publisher() (built-in function)

 	ethercat_keyboard_controller.ethercat_controller.default() (built-in function)

 	ethercat_keyboard_controller.ethercat_controller.do_help() (built-in function)

 	ethercat_keyboard_controller.ethercat_controller.do_shell() (built-in function)

 	ethercat_keyboard_controller.ethercat_controller.ethercat_communicator_client() (built-in function)

 	ethercat_keyboard_controller.ethercat_controller.modify_output_publisher() (built-in function)

 	ethercat_slaves (C++ member)

 	EthercatCommunicator (C++ class)

 	EthercatCommunicator::cleanup_handler (C++ function)

 	EthercatCommunicator::cleanup_pop_arg_ (C++ member)

 	EthercatCommunicator::communicator_thread_ (C++ member)

 	EthercatCommunicator::copy_data_to_domain_buf (C++ function)

 	EthercatCommunicator::current_thattr_ (C++ member)

 	EthercatCommunicator::dc_start_time_ns_ (C++ member)

 	EthercatCommunicator::dc_time_ns_ (C++ member)

 	EthercatCommunicator::has_running_thread (C++ function)

 	EthercatCommunicator::init (C++ function)

 	EthercatCommunicator::pdo_raw_pub_ (C++ member)

 	EthercatCommunicator::publish_raw_data (C++ function)

 	EthercatCommunicator::run (C++ function)

 	
 	EthercatCommunicator::running_thread_ (C++ member)

 	EthercatCommunicator::sched_param_ (C++ member)

 	EthercatCommunicator::start (C++ function)

 	EthercatCommunicator::stop (C++ function)

 	EthercatCommunicator::sync_distributed_clocks (C++ function)

 	EthercatCommunicator::system_time_base_ (C++ member)

 	EthercatCommunicator::system_time_ns (C++ function)

 	EthercatCommunicator::update_master_clock (C++ function)

 	EthercatSlave (C++ class)

 	EthercatSlave::alias_ (C++ member)

 	EthercatSlave::assign_activate_ (C++ member)

 	EthercatSlave::ethercat_slave_ (C++ member)

 	EthercatSlave::get_pdo_in (C++ function)

 	EthercatSlave::get_pdo_out (C++ function)

 	EthercatSlave::get_slave_config (C++ function)

 	EthercatSlave::init (C++ function)

 	EthercatSlave::input_port_ (C++ member)

 	EthercatSlave::output_port_ (C++ member)

 	EthercatSlave::pdo_in_ (C++ member)

 	EthercatSlave::pdo_out_ (C++ member)

 	EthercatSlave::position_ (C++ member)

 	EthercatSlave::product_code_ (C++ member)

 	EthercatSlave::slave_id_ (C++ member)

 	EthercatSlave::sync0_shift_ (C++ member)

 	EthercatSlave::vendor_id_ (C++ member)

F

 	
 	FIFO_SCHEDULING (C macro)

 	
 	FREQUENCY (C++ member)

I

 	
 	intro (ethercat_keyboard_controller attribute)

L

 	
 	lock (C++ member)

 	
 	log_fd (C++ member)

M

 	
 	main (C++ function)

 	master (C++ member)

 	
 	master_info (C++ member)

 	master_state (C++ member)

 	modify_pdo_pub (ethercat_keyboard_controller attribute)

N

 	
 	num_process_data_in (C++ member)

 	
 	num_process_data_out (C++ member)

P

 	
 	pdo_in_publisher (C++ member)

 	pdo_out_listener (C++ member)

 	pdo_out_publisher (C++ member)

 	pdo_out_publisher_timer (C++ member)

 	PDOInPublisher (C++ class)

 	PDOInPublisher::init (C++ function)

 	PDOInPublisher::pdo_in_pub_ (C++ member)

 	PDOInPublisher::pdo_raw_callback (C++ function)

 	
 	PDOInPublisher::pdo_raw_sub_ (C++ member)

 	PDOOutPublisher (C++ class)

 	PDOOutPublisher::init (C++ function)

 	PDOOutPublisher::pdo_out_pub_ (C++ member)

 	PDOOutPublisher::pdo_raw_callback (C++ function)

 	PDOOutPublisher::pdo_raw_sub_ (C++ member)

 	PERIOD_NS (C++ member)

 	process_data_buf (C++ member)

 	prompt (ethercat_keyboard_controller attribute)

R

 	
 	RUN_TIME (C++ member)

S

 	
 	sched_attr (C++ class)

 	sched_attr::sched_deadline (C++ member)

 	sched_attr::sched_flags (C++ member)

 	sched_attr::sched_nice (C++ member)

 	sched_attr::sched_period (C++ member)

 	sched_attr::sched_policy (C++ member)

 	sched_attr::sched_priority (C++ member)

 	
 	sched_attr::sched_runtime (C++ member)

 	sched_attr::size (C++ member)

 	SCHED_DEADLINE (C macro)

 	sched_getattr (C++ function)

 	sched_setattr (C++ function)

 	start_ethercat_communicator (C++ function), [1]

 	stop_ethercat_communicator (C++ function), [1]

 	SYNC_REF_TO_MASTER (C macro)

T

 	
 	total_process_data (C++ member)

U

 	
 	utilities (C++ type)

 	utilities::check_domain1_state (C++ function)

 	utilities::check_master_state (C++ function)

 	utilities::copy_process_data_buffer_to_buf (C++ function)

 	utilities::insist_write (C++ function)

 	utilities::ltrim (C++ function)

 	utilities::process_input_bit (C++ function)

 	utilities::process_input_int16 (C++ function)

 	utilities::process_input_int32 (C++ function)

 	
 	utilities::process_input_int64 (C++ function)

 	utilities::process_input_int8 (C++ function)

 	utilities::process_input_uint16 (C++ function)

 	utilities::process_input_uint32 (C++ function)

 	utilities::process_input_uint64 (C++ function)

 	utilities::process_input_uint8 (C++ function)

 	utilities::rtrim (C++ function)

 	utilities::safe_atoi (C++ function)

 	utilities::timespec_add (C++ function)

 	utilities::trim (C++ function)

V

 	
 	variables2indeces (ethercat_keyboard_controller.ethercat_controller attribute)

 nav.xhtml

 Table of Contents

 		
 Documentation Tutorial: IgH Master userspace real time program in ROS

 		
 Files / Classes

 		
 Header Files

 		
 EtherCAT Communicator header file

 		
 Input Process Data Objects publisher header file

 		
 Output Process Data Objects publisher header file

 		
 EtherCAT Slave header file

 		
 Main header file

 		
 Services header file

 		
 Utilities header file

 		
 Deadline Scheduler header file

 		
 Source Files

 		
 EtherCAT Communicator source file

 		
 Input Process Data Objects publisher source file

 		
 Output Process Data Objects publisher source file

 		
 EtherCAT Slave source file

 		
 Main source file

 		
 Services source file

 		
 Utilities source file

 		
 EtherCAT Keyboard Controller python file

 		
 License

 		
 Note

 		
 Guide

 		
 Features

 		
 Installation

 		
 0. Preempt_RT Patch

 		
 1. Installation of IgHM

 		
 2. Run the scripts

 		
 Contribute

 		
 Limitations / Steps Forward

 		
 Support

 		
 License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

